К 2020 г. рынок ИИ вырастет до $5 млрд
Консультанты J’son & Partners Consulting проанализировали все аспекты развития искусственного интеллекта и его перспективы во всех сферах экономической жизнедеятельности. В исследовании рассмотрена технологическая составляющая искусственного интеллекта, список сценариев использования и его трансформационная сила.
Экосистема рынка искусственного интеллекта
Рынок ИИ состоит из множества компаний и институтов, которые выполняют свои специфические задачи и функции. Хотя современная экосистема на этом рынке в целом пока формируется, однако уже сейчас можно представить, какими будут ее очертания в ближайшем будущем.
Одним из способов, по которому можно классифицировать игроков на рынке, является способ, предложенный CEO SafeGraph Ауреном Хофманом (Auren Hoffman), который подразделяет компании, занимающиеся машинным обучением и ИИ, на три типа:
Superrich — сверхбогатые.
Servicers — обслуживающие компании.
Innovators — инноваторы.
Каждая из этих типов компаний имеет свою особенность, которая важна для понимания формирующейся экосистемы рынка ИИ.
Компании типа Superrich— это компании, которые занимаются технологиями ИИ и обладают своими данными. Это такие компании, как Google, Facebook, Baidu, Tencent, Amazon, Microsoft и другие. Таких компаний в мире немного, но у них имеется существенное преимущество: поскольку у них имеется доступ к огромным резервуарам очищенных и структурированных данных, инженеры этих компаний могут заниматься развитием технологий ИИ, базируясь на имеющихся ресурсах, и развивать свои алгоритмы и подходы.
Компании типа Servicers помогают другим компаниям обрабатывать крупные массивы данных. Они могут обработать огромные кластеры данных, в том числе неструктурированных, и добыть необходимые инсайты. Эти компании являются сервисными, поскольку не имеют своих данных, но работают с данными своих клиентов. Одна из таких успешных компаний, к примеру, Palantir Technologies, которая является очень востребованным решением в государственных органах США и помогает им разобраться в данных с минимальными расходами. Другие примеры — это IBM, HP, Oracle, а также различные консалтинговые компании и компании, которые на основе своих решений помогают крупным компаниям улучшить какой-либо аспект бизнеса — ценообразование, логистику, обслуживание клиентов.
Тип компаний-инноваторов сосредоточен на решении специфической проблемы, но не имеет своих данных и при этом не оказывает сервисных услуг другим компаниям. Примерами таких компаний могут быть Two Sigma Investments и Point72 Asset Management, которые тратят миллионы долларов на данные, поскольку не генерируют данные сами. Другие примеры — это Cruise Automation, которая развивает историю самоуправляемых автомобилей и недавно была приобретена GM, и Flatiron Health, которая занимается исследованиями в области рака. Таким компаниям приходится после приобретения данных также чистить их, объединять, то есть проводить предварительные процедуры ETL, прежде чем начать работать с ними.
Компании из категории Superrich обладают могущественными преимуществами перед остальными. Однако можно предположить, что, поскольку доступ к данным становится все более демократичным, компании из двух остальных групп будут тем не менее развиваться высокими темпами. Пример такой демократизации — это Yahoo, выложившая 13,5 Тб данных о том, как вели себя пользователи на главной странице Yahoo и на страницах отдельных сервисов компании, и компания Criteo, разработчик технологических решений для рекламы, опубликовавшая 1 Тб данных.
По мнению экспертов IDC, такие компании, как Amazon, Alphabet, IBM и Microsoft, будут обладать 60% платформ ИИ. Сейчас эти компании также доминируют в бизнесе, связанном с облачными вычислениями.
Вместе с тем каждая упомянутая компания, взятая по отдельности, наращивает свою собственную экосистему. К примеру, хотя IBM и очень давно занимается вопросами развития ИИ, однако победа ее программно-апаратного решения IBM Watson в шоу Jeopardy! в 2011 стала символическим стартом развития ее экосистемы. Сейчас экосистема IBM Watson— это десятки тысяч разработчиков, предпринимателей и других энтузиастов, которые создали тысячи приложений с помощью Watson Zone on Bluemix, которая является PaaS-решением (Platform as a Service) IBM. Bluemix позволяет любому пользователю использовать 100 инструментов, которые включают в себя сервисы Watson для эффективного создания, запуска и управления приложениями в любой облачной среде.
Венчурное инвестирование и стартапы в ИИ
ИИ становится реальностью, и, по всей видимости, именно стартапы будут играть ведущую роль в этой экосистеме. Например, недавно созданная компания ROSS Intelligence разработала «адвоката» на основе технологии ИИ. Машина может проделать работу целого офиса профессиональных юристов. Работающая на мощностях суперкомпьютера IBM Watson система имеет все шансы стать полноценным инструментом в юридической практике. ROSS автоматизирует задачи и процессы, на которые раньше уходили дни и недели работы.
Еще один стартап — разработчик мессенджера для бизнеса Slack — сейчас работает над созданием интеллектуального помощника, который будет автоматически отвечать на стандартные вопросы и тем самым экономить время сотрудников.
«Призма» — российское приложение, переносящее стили известных художников на фото с помощью нейросетей. Программа, на первый взгляд, ничем не отличается от решений конкурентов, превращающих снимки в «шедевры искусства» с помощью наложения фильтров. Однако благодаря использованию нейросетей результаты у новой программы получаются более качественными: речь идет не о наложении фильтра на фотографию, а фактически о ее перерисовке в заданном стиле. Команде разработчиков удалось достигнуть самой высокой скорости работы среди конкурентов, среди которых Dreamscope, веб-сервис deepart.io и Mlvch.
Крупные компании активно присоединяют талантливые проекты к себе. Так, Microsoft приобрела SwiftKey, разработчика мобильной клавиатуры, в которой технологии машинного обучения помогают лучше предсказывать вводимые слова и фразы. Magic Pony Technology с технологией моделирования изображений с опорой на нейросети была куплена Twitter за $150 млн. Разработчик микропроцессоров ARM при покупке компании Apical, создателя решений на основе машинного обучения в сфере компьютерного зрения, оценил ее в $350 млн.
Во втором квартале 2016 года инвестиции в ИИ достигли рекордных значений. При этом большинство сделок прошли на начальных этапах роста стартапов (60%). Отчасти подобные результаты были достигнуты за счет нескольких крупных инвестиционных сделок: $154 млн было вложено в китайский стартап iCarbonX, специализирующийся на разработках для медицинских целей, $100 млн было вложено в американский FractalAnalytics, и еще $ 100 млн инвестировали в компанию, занимающуюся кибербезопасностью, — Cylance.
Около 70% сделок во втором квартале зафиксированы в США. Почти 60% сделок прошли на начальном этапе финансирования стартапов — посевной этап / серия А. На серии В и С пришлось всего 12%.
За период 2011–2016 всего было приобретено 140 частных компаний, работающих на развитие технологий ИИ, из них 40 приобретений произошло в 2016 году. К гонке присоединяются как компании, меньшие по размеру, так и игроки, которые раньше были неактивны. Например, Samsung вошла на рынок M&A в октябре 2016 года, заключив сделку по приобретению стартапа Viv Labs, который развивает ассистента с ИИ наподобие Siri. Также GE закрыл две сделки в ноябре 2016 года.
Рынок искусственного интеллекта
ИИ стал ключевым технологическим трендом 2016 года, и объем глобальных инвестиций в него превышает $500 млн. По прогнозам международной исследовательской компании Markets and Markets, к 2020 году рынок ИИ вырастет до $5 млрд за счет применения технологий машинного обучения и распознавания естественного языка в рекламе, розничной торговле, финансах и здравоохранении.
В Gartner считают, что к 2020 году около 40% всех взаимодействий с виртуальными помощниками будет опираться на данные, обработанные нейронными сетями.
Tractica на основе таксономии 191 реального кейса поделила рынок ИИ на 27 секторов. Эксперты предполагают, что такие usecase, как распознавание образов, алгоритмическая биржевая торговля и управление данными пациентов в здравоохранении, имеют колоссальный потенциал масштабирования, в то время как другие кейсы пока являются нишевыми. Динамика ИИ, на их взгляд, будет основываться на шести фундаментальных технологиях: машинное обучение, глубинное обучение, компьютерное зрение, обработка естественного языка, машинная аргументация и сильный ИИ. Хотя в перспективе 10 лет ИИ-технологии повлияют практически на каждый бизнес, основными драйверами рынка станут секторы потребительских продуктов, бизнес-услуг, рекламы и обороны. Tractica предсказывает рост доходов на рынке ИИ с $643,7 млн в 2016 году до $38,8 млрд к 2025 году.
Развитие рынка ИИ в терминах доли на рынке будет происходить преимущественно в Северной Америке, поскольку и сейчас этот регион является центром динамичного развития продвинутых технологий, производственных процессов, инфраструктуры, располагаемого дохода и т. д. Широкая адаптация технологии ИИ в промышленности, медиа и рекламе, здравоохранении, BFSI, транспорте и автопроме является ключевым фактором, поддерживающим рост рынка ИИ в этом регионе.
Сферы применения ИИ
Сферы применения ИИ достаточно широки и охватывают как привычные слуху технологии, так и появляющиеся новые направления, далекие от массового применения, иначе говоря, это весь спектр решений, от пылесосов до космических станций. Можно разделить все их разнообразие по критерию ключевых точек развития.
Как показывает иллюстрация, ИИ — это не монолитная предметная область. Более того, некоторые технологические направления ИИ фигурируют как новые подотрасли экономики и обособленные сущности, одновременно обслуживая большинство сфер в экономике.
Как видно, две группы использования ИИ подразделены на физический и виртуальный слой, при этом преобладает виртуальный пласт. Развитие применения использования ИИ по этим направлениям приведет к адаптации технологий в классических отраслях экономики по всей цепочке создания ценности и преобразует их, приводя к алгоритмизированию практически всего функционала, от логистики до управления компанией.
Чат-боты перерисовывают ландшафт IT-экосистемы. Они могут заменить собой и приложения, и обслуживающий персонал в компаниях, и даже целые операционные системы. Чат-бот (Chat-bot) — это программа-собеседник, которая предназначена для общения и помощи человеку. При этом на другом конце всегда находится сложная система, базирующаяся на нескольких технологиях ИИ. Чат-боты, ориентированные на бизнес-задачи, могут подобрать лучший рейс, диету, фитнес-тренировку, забронировать гостиницу, выбрать покупку, то есть они представляют собой новую подотрасль обслуживания и ассистирования.
Согласно данным опроса BI Intelligence, применение чат-ботов уже взлетело в США, где более половины американских пользователей в возрасте от 18 до 55 лет сейчас использует их.
По прогнозам Gartner, цифровые ассистенты будут «знать» нас к 2018 году на основе собранного кликстрима и накопленных больших данных. По результатам опроса руководителей компаний голосовой помощник является программным обеспечением № 1. Среди помощников, которыми больше всего пользуются на рабочем месте, были названы Siri от Apple, GoogleAssistant, а также Alexa от компании Amazon. Хотя зрелость голосовых помощников пока на низком уровне, примечательно, что их популярность даже выше программных продуктов, связанных с большими данными.
Персональные ассистенты являются своеобразной инкарнацией чат-ботов, хотя и более распространенной по причине того, что технология развивается крупнейшими IT-компаниями. В настоящее время сотни миллионов людей взаимодействуют с персональными цифровыми ассистентами на таких платформах, как Google, Apple, Amazon, Facebook и другие. Эта технология с помощью персональных ассистентов и чат-ботов делает переход от графического пользовательского интерфейса (Graphical User Interface, GUI) к диалоговому интерфейсу (Conversational User Interface, CUI) ключевым трендом ближайших нескольких лет.
По оценке Markets And Markets, объем рынка распознавания образов достигнет $29,98 млрд к 2020 году со средним CAGR на уровне 19,1%. Технологии распознавания образов содержат в себе распознавание паттернов, оптических образов, кода, объектов и цифровых фотографий. Они либо по отдельности, либо в интегрированном виде используются в таких сферах, как безопасность и наблюдение, сканирование и создание изображений, маркетинг и реклама, дополненная реальность и поиск изображений.
Ключевым драйвером этого рынка является уход всех процессов как в бизнесе, так и в потребительском сегменте в облака, а также рост влияния Интернета, смартфонов, социальных медиа. Акторами этого рынка являются такие крупные корпорации, как NEC, Google, Honeywell, Hitachi и Qualcomm Technologies. Также присутствует множество меньших по размеру игроков, таких как LTU Technologies, Attrasoft, Blippar и SLYCE, и таких вендоров, как Catchoom и Wikitude.
Мировой рынок распознавания речи оценен BCC Research в колоссальные $90,3 млрд в 2015 году. Ожидается, что этот рынок вырастет со $104,4 млрд в 2016 до $ 184,9 млрд в 2021 со средними темпами (CAGR) на уровне 12,1 % за период 2016–2021.
Рынок обработки естественного языка (Natural Language Processing, NLP) оценивается Market And Markets в $ 7,63 млрд в 2016 году и вырастет до $ 16,07 млрд к 2021, с CAGR на уровне 16 1 %. Основными драйверами компания считает возрастающий спрос на более продвинутый уровень пользовательского опыта, рост пользования умными девайсами, рост инвестиций в здравоохранение, растущее применение сетевых и облачных бизнес-приложений и рост M2M-технологий.
Экосистема рынка NLP состоит из следующих вендоров, предлагающих лучшие NLP-решения: 3M Company, Amazon, Apixio, Inc., Apple Inc., Cerner Corporation, Dolbey Systems, Google Inc., IBM, Linguamatics, Microsoft Corporation, NetBase Solutions, Inc., Nuance Communications, Inc., Optum, Inc., SAS Institute, Inc. (США),Text Analysis International, Verint Systems Inc.
Огромный скачок в системе распознавания речи сделала Microsoft, которая объявила, что ее система распознавания речи теперь так же точна, как распознавание речи живым человеком. Довести систему распознавания речь до такого высокого уровня удалось в том числе с помощью метода, разработанного резидентом «Сколково», компанией «ЦРТ-инновации» (группа «Центр речевых технологий»).
ИИ и роботизация
BoA предполагает, что к 2020 году рынок ИИ-решений будет эквивалентен $153 млрд, из которых $ 83 млрд составят роботы и робототехника и $ 70 млрд — аналитические решения на основе ИИ.
В результате так называемая «революция роботов», о которой говорят экономисты и аналитики крупнейших банков, позволит мировой экономике повысить производительность на 30 % при снижении производственных затрат на рабочую силу от 18 % до 33 %. Пальма первенства будет принадлежать США и Японии. В общей сложности на мировом рынке работает порядка 400 компаний, занимающихся производством робототехники.
Алгоритмизация бизнеса
Алгоритмический бизнес относительно новое понятие в современной бизнес-лексике. Вернее, оно даже пока не перешло из сферы консалтинговых прогнозов в сферу бизнеса. Однако, на наш взгляд, именно это слово наилучшим способом описывает глобальное влияние ИИ на все сферы бизнеса и являет собой в конечном итоге результат сшивания и сращивания технологий ИИ между отраслями. Когда речь идет об алгоритмизации бизнеса, необходимо иметь в виду саму инкарнацию ИИ в бизнесе, которая может ранжироваться от ассистирующей по различным вопросам и до сущности, принимающей в том числе управленческие решения.
По оценкам Gartner, к 2020 году автономные программные агенты, которые впервые в истории не будут подконтрольны человеку, станут участниками 5 % экономических транзакций. Алгоритмически управляемые агенты уже участвуют в нашей экономике. Тем не менее, в то время как эти агенты автоматизированы, они не являются полностью автономными, так как напрямую привязаны к сложной структуре механизмов, управляемых людьми, — в корпоративных, юридических, экономических и фидуциарных доменах. Новые автономные программные агенты будут иметь самостоятельную ценность и функционировать в качестве фундаментальной основы новой экономической парадигмы, называемой Gartner программируемой (programmable economy). Одной из первых отраслей, которые будут подвержены прямому воздействию такого парадигматического сдвига, станет финансовая система. Мы увидим алгоритмы, часто разработанные в прозрачном виде, с открытым исходным кодом и установленные бесплатно на блокчейн, которые будут самостоятельно выполнять банковские операции, оформлять сделки по страхованию, заниматься сделками на рынке ценных бумаг и осуществлять прочие функции.
В свете таких преобразований не удивляет также и другой прогноз Gartner о том, что к 2018 году более 3 млн работников в мире будут подчиняться «боссу-роботу» (robo-boss).
Российские примеры компаний, работающих в сфере ИИ
Поскольку сфера ИИ является сращиванием математических наук и программирования, у России, имеющей солидную базу и школы в этих направлениях, неплохие шансы на получение статуса глобального игрока при достаточном внимании к этой сфере со стороны в первую очередь профильных государственных ведомств в виде программ и, разумеется, крупных частных игроков.
Среди разработок и компаний можно назвать и инициативу сервиса онлайн-заказа такси «Яндекс.Такси» с технологией интеллектуального распределения заказов с переходом на технологии интеллектуального распределения заказов, с учетом дорожной ситуации и специальных пожеланий пользователей. ПАО «КамАЗ» разрабатывает систему полуавтономного управления автомобилем, которая будет строиться на комплексе технологий искусственного интеллекта — компьютерного зрения, машинного обучения, речевых технологий. В сотрудничестве с российской Cognitive Technologies автопроизводитель готовится к выпуску предпромышленной версии системы помощи водителю ADAS (Advanced Driver Assistance System) первого уровня. С другой стороны, разработки группы ЦРТ в области речевых технологий вошли в технологический стэк Microsoft. Также примером удачного использования машинного обучения в области популярных ныне фильтров для соцсетей является нашумевшее приложение Prisma, разработанное в недрах Mail.Ru Group независимыми разработчиками. Пионер в сфере использования чат-ботов мессенджер Telegram стал локомотивом развития индустрии в России с таким ярким российским стартапом, как Chatfuel, в который вложились крупнейшие зарубежные венчурные компании. А робот «Вера», созданный петербургской компанией Stafory, проводит собеседование с потенциальными кандидатами на открытые вакансии, делая за полчаса ту работу, которую три-четыре человека делают неделю.
«Сбербанк» в конце 2016 года анонсировал запуск робота-юриста. Годом ранее банк запустил систему искусственного интеллекта Iron Lady, которая занимается обзвоном должников.
Фонд развития интернет-инициатив и Сбербанк в 2016 году подтвердили инвестиции в пермского разработчика сервисных роботов-промоутеров — Promobot. Руководитель робототехнического центра «Сколково» Альберт Ефимов отмечает, что конкуренция в сфере робототехники сейчас высока и на рынке много китайских решений рекламного робота, однако общий недостаток — это их уровень интеллекта, что выгодно отличает Promobot. Главным ограничителем быстрого развития отечественного робота, пожалуй, является цена.
Риски развития ИИ
По сообщениям журнала Technology Review, уже через 60 лет искусственный интеллект начнет представлять серьезную угрозу для человечества. К 2022 году ИИ начнет мыслить приблизительно на 10% как человек, к 2040 году — на 50%, а к 2075 году мыслительные процессы робота будут неотличимы от человеческих. Такие оценки приводит британский ученый, автор нашумевшей книги SuperIntelligence профессор Оксфорда Ник Бостром. Такие оценки неудивительны в свете работающих систем на базе ИИ Deep Blue — машины, выигравшей в шахматы человека, IBM Watson, победившей в игре Jeopardy!, и MYCIN — мощнейшей системы диагностики заболеваний.
Недавний опрос, проведенный Институтом будущего человека (FHI) из Оксфордского университета в Великобритании, показывает, что «Скайнет» как настоящий искусственный интеллект человеческого уровня может возникнуть около 2028 года.
Тема о будущем человечества, противоборстве с машинами и, наоборот, гибридизации вывела на свет целый ворох новых опасений и терминов. Среди них трансгуманизм и технологическая сингулярность.
Технологическая сингулярность — гипотетический момент, по прошествии которого, по мнению сторонников данной концепции, технический прогресс станет настолько быстрым и сложным, что окажется недоступным человеческому пониманию.
Сингулярность — это момент времени, когда компьютеры во всех своих инкарнациях станут умнее людей. Когда это произойдет, компьютеры будут иметь возможность расти в геометрической прогрессии по сравнению с самими собой и воспроизводить себя, а их интеллект будет в миллиарды раз быстрее, чем человеческий.
По прогнозам, данный момент может наступить уже через 14 лет, а именно в 2030 г. Основным представителем этой идеи является Рэймонд Курцвейл, ученый, автор книги «Сингулярность близко» и ныне технический директор Google. Хотя и не все ученые поддерживают данную концепцию, утверждая, что развитие технологий происходит по S-кривой и в конце прошлого века началось замедление процесса ускорения.
Ник Бостром — шведский философ, профессор Оксфордского университета, сооснователь Всемирной ассоциации трансгуманистов и директор созданного в 2005 году в Оксфорде Института будущего человечества. Он пытается осознать проблему, встающую перед человечеством в связи с перспективой появления сверхразума. Что случится, если машины превзойдут людей в интеллекте? Будут ли они помогать нам или уничтожат человечество? Можем ли мы сегодня игнорировать проблему развития искусственного интеллекта и чувствовать себя в полной безопасности? Ник Бостром разделяет виды компьютерного интеллекта на несколько видов.
Согласно мнению некоторых экспертов, подлинный ИИ будет последним изобретением человечества. Искусственный интеллект несет определенные риски — исчезновение целого ряда профессий, разобщение людей, а возможно, даже потерю естественных навыков человека. Для человечества точка невозврата может быть пройдена, когда какая-нибудь страна даст ИИ право на насилие, что не исключено, учитывая, что ИИ исторически развивается и очень востребован в военной области.
Опубликовано 09.03.2017